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Abstract

We present existence, uniqueness and continuous dependence (with respect to probability distribu-
tions on polarization parameters) of solutions in Maxwell systems. This provides a theoretical and
computational foundation for associated inverse problems.
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1 Introduction

In this note we consider well-posedness questions for the variational solutions of one dimensional Maxwell’s
equations with an absorbing left boundary condition, a supraconducting right boundary condition and a
general macroscopic polarization term which includes uncertainty in the dielectric parameters. For these
solutions, we establish existence, uniqueness and continuous dependence on the uncertainty measures in
a Prohorov metric (see [B], [BB] for definitions and details) sense. As explained below, these results can
be readily used in an inverse problem methodology to determine the unknown distribution of the dielec-
tric parameters which govern the behavior of the electric field and the electric polarization in a general
heterogeneous material with multiple mechanisms (Debye, Lorentz, etc.) and relaxation parameters.

2 Problem Formulation

We consider the one dimensional problem formulation in [BBL]. Assuming D = εE + P , we may obtain
Maxwell’s equations [E] in second order form given by:

µ0εË + µ0IΩP̈ + µ0σĖ − E′′ = −µ0J̇s in Ω ∪ Ω0, (1)

where E is the transverse component of the electric field, P is the material macroscopic electric polar-
ization, ε = ε(z) is the dielectric permittivity and σ = σ(z) is the conductivity of the material. The
boundary conditions that we are assuming are absorbing at z = 0 and supraconducting at z = 1:

[

Ė − cE′
]

z=0
= 0, E(t, 1) = 0. (2)

Our initial conditions are
E(0, z) = Φ(z), Ė(0, z) = Ψ(z). (3)

To describe the behavior of the electric polarization P , we begin with the general formulation of
Chapter 2 of [BBL] by employing a polarization kernel g in the convolution expression

P (t, z) =

∫ t

0

g(t− s, z; τ)E(s, z)ds. (4)
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As explained in [BBL], this general formulation includes as special cases the well known orientational or
Debye polarization model, the electronic or Lorentz polarization model, and linear combinations thereof,
as well as other higher order models. In the Debye case the kernel is given by

g(t; τ) = ε0(εs − ε∞)/τ e−t/τ ,

while in the Lorentz model (again see [BBL]), it takes the form

g(t; τ) = ε0ω
2
p/ν0 e

−t/2τ sin(ν0t).

However, use of these kernels presupposes that the material may be sufficiently defined by a single
relaxation parameter τ , which is generally not the case. In order to account for multiple relaxation
parameters in the polarization mechanisms, we allow for a distribution of relaxation parameters which
is conveniently described in terms of a probability measure F . Thus, we define our polarization model
in terms of a convolution operator

P (t, z) =

∫ t

0

G(t− s, z)E(s, z)ds

where G is determined by various polarization mechanisms each described by a different parameter τ ,
and therefore is given by

G(t, z;F ) =
∫

T

g(t, z; τ)dF (τ)

where T ⊂ [τ1, τ2]. In particular, if the distribution were discrete, consisting of a single relaxation
parameter, then we would again have (4).

Note that,

P̈ (t, z) =

∫ t

0

G̈(t− s, z)E(s, z)ds+ G(0, z)Ė(t, z) + Ġ(0, z)E(t, z) (5)

where

G̈(t, z;F ) =
∫

T

g̈(t, z; τ)dF (τ).

Substituting (5) into (1) we obtain

µ0εË(t, z) + µ0IΩ [σ + G(0, z)] Ė(t, z) + µ0IΩĠ(0, z)E(t, z)

+

∫ t

0

µ0IΩG̈(t− s, z)E(s, z)ds− E′′(t, z) = −µ0J̇s(t, z).

Further, converting to weak form (and multiplying both sides by c2), we find

〈ε̃rË(t, ·), φ〉+ 〈 1
ε0
IΩ [σ + G(0, ·)] Ė(t, ·), φ〉+ 〈 1

ε0
IΩĠ(0, ·)E(t, ·), φ〉

+ 〈 1
ε0

∫ t

0

IΩG̈(t− s, ·)E(s, ·)ds, φ〉 − 〈c2E′′(t, ·), φ〉 = −〈 1
ε0
J̇s(t, ·), φ〉,

where ε̃r = ε
ε0

and φ ∈ V = H1
R(0, 1) = {φ ∈ H1(0, 1) : φ(1) = 0}. (Without loss of generality, we

will hereafter assume ε̃r = 1.) Finally, we integrate by parts, and apply the boundary conditions (2) to
obtain

〈Ë(t, ·), φ〉+ 〈 1
ε0
IΩ [σ + G(0, z)] Ė(t, ·), φ〉+ 〈 1

ε0
IΩĠ(0, ·)E(t, ·), φ〉

+ 〈 1
ε0

∫ t

0

IΩG̈(t− s, ·)E(s, ·)ds, φ〉+ 〈c2E′(t, ·), φ′〉+ cĖ(t, 0)φ(0) = −〈 1
ε0
J̇s(t, ·), φ〉,

which we can rewrite as

〈Ë, φ〉+ 〈γĖ, φ〉+ 〈βE, φ〉+ 〈
∫ t

0

α(t− s, ·)E(s, ·)ds, φ〉+ 〈c2E′, φ′〉+ cĖ(t, 0)φ(0) = 〈J , φ〉, φ ∈ V, (6)
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where

γ(z) =
1

ε0
IΩ [σ(z) + G(0, z)] = 1

ε0
IΩ

[

σ(z) +

∫

T

g(0, z; τ)dF (τ)

]

β(z) =
1

ε0
IΩĠ(0, z) =

1

ε0
IΩ

∫

T

ġ(0, z; τ)dF (τ)

α(t, z) =
1

ε0
IΩG̈(t, z) =

1

ε0
IΩ

∫

T

g̈(t, z; τ)dF (τ)

J (t, z) = − 1

ε0
J̇s(t, z).

3 Estimation Methodology

Our goal is to estimate the probability distribution function (PDF) of relaxation parameters F ∈ P(T ) in
a given model of the polarization, where P(T ) is the set of all PDFs on the admissible region T ⊂ [τ1, τ2].
To this end we attempt to minimize the difference between model simulations and observations of time-
domain data. In our formulation (for details, see [BBL]), the observations, Êj , are of the electric field
E at discrete times tj taken at z = 0. Each simulation is a solution of Maxwell’s equation given in (6)
with (3) using candidate values for the distribution of relaxation parameters. We propose a standard
least-squares criterion (which is equivalent to a maximum likelihood estimation in many situations-see
[DG]) for the optimization procedure given by

J(F ) =
∑

j

|E(tj , 0;F )− Êj |2 (7)

where E(·, ·;F ) is the solution of (6) with (3) corresponding to the distribution F . Thus the inverse
problem is to solve

min
F∈P(T )

J(F ).

In practice, one may choose to approximate a continuous distribution F by a discrete one with, for
example, N elements. This approach would result in a straight-forward N -dimensional minimization
problem. Other parameterizations of the unknown distribution are also possible to reduce the problem
to a finite dimensional one.

4 Well-Posedness

In this section we address the questions of well-posedness of the form of Maxwell’s equation given in (6)
with respect to the unknown distribution of dielectric parameters. In particular we wish to establish the
continuous dependence of solutions on the distributions in the sense of the Prohorov metric. This leads
in turn to well-posedness for the inverse problems involving (7).

First, given that we assume g, ġ, and g̈ are uniformly continuous in τ and bounded on ([0, T ]× [0, 1]×
[τ1, τ2]) where 0 < τ1 < τ2 <∞, then G, Ġ, and G̈ are L∞ since, for example,

|G|∞ ≤
∫

T

|g(·, ·; τ)|∞dF (τ) ≤M∞

when T ⊂ [τ1, τ2]. Therefore, α, β, and γ are all also L∞. Thus, for each fixed F ∈ P(T ), α, β, and γ
satisfy the hypothesis of Theorem 1 in [BBL, p. 35], so that given Φ ∈ V , Ψ ∈ H = L2(0, 1), a unique
solution to (6) with (3) exists, and E ∈ L2([0, T ], V ), Ė ∈ L2([0, T ], H).

It remains yet to show the continuous dependence of solutions on F . First we note that Fn → F in
the Prohorov sense is equivalent to

∫

f(τ)dFn(τ)→
∫

f(τ)dF (τ) ∀ f ∈ C[τ1, τ2].

Since g̈ is uniformly continuous in τ , we have then that α(t, z;Fn) → α(t, z;F ) a.e. when Fn → F .
We will define αn := α(t, z;Fn) and α := α(t, z;F ). Because |αn|L∞ ≤ M for all n, the Dominated
Convergence Theorem implies that αn → α in L2([0, T ] × [0, 1]). Similarly, we can show that βn → β
and γn → γ in L2.
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We consider arguments for fixed β and γ. We need to show that (En, Ėn)→ (E, Ė) in L2([0, T ], V )×
L2([0, T ], H) when αn → α, where En denotes the solution to (6) corresponding to αn.

We begin by subtracting equation (6) corresponding to α from (6) corresponding to αn to obtain

〈Ën − Ë, φ〉+ 〈γ(Ėn − Ė), φ〉+ 〈β(En − E), φ〉+ 〈c2(En′ − E′), φ′〉

+ c
[

Ėn(t, 0)− Ė(t, 0)
]

φ(0) = −〈
∫ t

0

[αn(t− s, z)En(s, z)− α(t− s, z)E(s, z)] ds, φ〉.

By adding and subtracting a mixed term to the right side, we have

〈Ën − Ë, φ〉+ 〈γ(Ėn − Ė), φ〉+ 〈β(En − E), φ〉+ 〈c2(En′ − E′), φ′〉

+ c
[

Ėn(t, 0)− Ė(t, 0)
]

φ(0) = −〈
∫ t

0

αn(E
n − E)ds, φ〉 − 〈

∫ t

0

(αn − α)Eds, φ〉. (8)

Following the general procedure in [BBL] ( see also [L], [W] for related fundamental ideas and theory),
we approximate En and E in Vm=span{w1, ..., wm} by

En
m(t, z) =

m
∑

i=1

eni (t)wi(z)

Em(t, z) =
m
∑

i=1

ei(t)wi(z).

Then (8) becomes

〈Ën
m − Ëm, φ〉+ 〈γ(Ėn

m − Ėm), φ〉+ 〈β(En
m − Em), φ〉+ 〈c2(En′

m − E′
m), φ′〉

+ c
[

Ėn
m(t, 0)− Ėm(t, 0)

]

φ(0) = −〈
∫ t

0

αn(E
n
m − Em)ds, φ〉 − 〈

∫ t

0

(αn − α)Emds, φ〉,

which must hold for all φ ∈ Vm. Since Ėn
m and Ėm are both in Vm, we may take φ = Ėn

m − Ėm. Then
we have

1

2

d

dt

[

|Ėn
m − Ėm|2H + σ1(E

n
m − Em, E

n
m − Em)

]

+ |√γ(Ėn
m − Ėm)|2H + c|Ėn

m(t, 0)− Ėm(t, 0)|2

= 〈k(En
m − Em), Ėn

m − Ėm〉 − 〈
∫ t

0

αn(E
n
m − Em)ds, Ėn

m − Ėm〉 − 〈
∫ t

0

(αn − α)Emds, Ė
n
m − Ėm〉,

where we have used the sesquilinear form σ1 : V × V → C defined by

σ1(φ, ψ) = 〈c2φ′, ψ′〉H + 〈β̂φ, ψ〉H

for φ,ψ ∈ V and where β̂ = β + k > 0 for some sufficiently large k > 0.
Integration, along with the V -ellipticity of σ1 yields

|Ėn
m(t)− Ėm(t)|2H + c1|En

m(t)− Em(t)|2V + 2

∫ t

0

|√γ(Ėn
m(s)− Ėm(s))|2Hds

+ 2c|Ėn
m(t, 0)− Ėm(t, 0)|2L2(0,t) ≤ 2

∣

∣

∣

∣

∫ t

0

Fn
m(ξ)dξ

∣

∣

∣

∣

, (9)

where

Fn
m(ξ) = 〈k[En

m(ξ)− Em(ξ)], Ėn
m(ξ)− Ėm(ξ)〉 − 〈

∫ ξ

0

αn[E
n
m(s)− Em(s)]ds, Ėn

m(ξ)− Ėm(ξ)〉

− 〈
∫ ξ

0

[αn − α]Em(s)ds, Ėn
m(ξ)− Ėm(ξ)〉

= T2(ξ) + T3(ξ) + T4(ξ).

Following precisely the arguments in [BBL] we have that

∫ t

0

|T2(ξ)|dξ ≤
∫ t

0

[

1

2
k2|En

m(ξ)− Em(ξ)|2H +
1

2
|Ėn

m(ξ)− Ėm(ξ)|2H
]

dξ
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and
∫ t

0

|T3(ξ)|dξ ≤ K1

∫ t

0

|En
m(ξ)− Em(ξ)|2Hdξ +K2

∫ t

0

|Ėn
m(ξ)− Ėm(ξ)|2Hdξ.

Lastly, we bound the final term by

|T4(ξ)| = 〈
∫ ξ

0

[αn(ξ − s)− α(ξ − s)]Em(s)ds, Ėn
m(ξ)− Ėm(ξ)〉

≤ 1

2

∣

∣

∣

∣

∫ ξ

0

[αn(ξ − s)− α(ξ − s)]Em(s)ds

∣

∣

∣

∣

2

H

+
1

2
|Ėn

m(ξ)− Ėm(ξ)|2H .

Since Em is bounded in C([0, T ], V ),

|T4(ξ)| ≤
1

2

(
∫ ξ

0

KE |αn(ξ − s)− α(ξ − s)|Hds
)2

+
1

2
|Ėn

m(ξ)− Ėm(ξ)|2H

≤ 1

2
K2

Et

∫ ξ

0

|αn(ξ − s)− α(ξ − s)|2Hds+
1

2
|Ėn

m(ξ)− Ėm(ξ)|2H .

Thus
∫ t

0

|T4(ξ)|dξ ≤ K̂3

∫ t

0

∫ ξ

0

|αn(ξ − s)− α(ξ − s)|2Hdsdξ +K4

∫ t

0

|Ėn
m(ξ)− Ėm(ξ)|2Hdξ.

We observe that
∫ t

0

∫ ξ

0

f(ξ − s)dsdξ =
∫ t

0

∫ t−u

0

f(u)dsdu

=

∫ t

0

f(u)(t− u)du

≤ C

∫ t

0

f(u)du for t, u ∈ [0, T ].

Therefore
∫ t

0

|T4(ξ)|dξ ≤ K3

∫ t

0

|αn(u)− α(u)|2Hdu+K4

∫ t

0

|Ėn
m(ξ)− Ėm(ξ)|2Hdξ.

Using the above bounds, we find that (9) becomes

|Ėn
m(t)− Ėm(t)|2H +c1|En

m(t)−Em(t)|2V +2

∫ t

0

|√γ(Ėn
m(s)− Ėm(s))|2Hds+2c|Ėn

m(·, 0)− Ėm(·, 0)|2L2(0,t)

≤ C1

∫ t

0

|En
m(s)− Em(s)|2Hds+ C2

∫ t

0

|Ėn
m(s)− Ėm(s)|2Hds+ C3

∫ t

0

|αn(s)− α(s)|2Hds. (10)

Noting that | · |H ≤ µ| · |V for some constant µ and letting

κn :=

∫ T

0

|αn(s)− α(s)|2Hds = |αn − α|2L2([0,T ],H) ,

we then have that (10) implies

|Ėn
m(t) − Ėm(t)|2H + |En

m(t) − Em(t)|2V ≤ νκn + ν

∫ t

0

[

|En
m(s)− Em(s)|2V + |Ėn

m(s)− Ėm(s)|2H
]

ds

for some ν > 0 independent of m and n. Using Gronwall’s Inequality we have

|Ėn
m(t)− Ėm(t)|2H + |En

m(t)− Em(t)|2V ≤ νκne
νT for t ∈ [0, T ]. (11)

From the existence proof in [BBL] we have that for each fixed n, En
m ⇀ En in L2([0, T ], V ). Therefore

using weak lower semicontinuity of norms we have

|En − E|2L2([0,T ],V ) ≤ lim inf
m

|En
m − Em|2L2([0,T ],V ) ,

5



with a similar estimate holding for Ėn− Ė in the L2([0, T ], H) norm. We may apply these results to the
integral of (11) from 0 to T to finally obtain

|Ėn − Ė|2L2([0,T ],H) + |En − E|2L2([0,T ],V ) ≤ νκnTe
νT .

Since αn → α in L2, then κn → 0, which gives continuous dependence of (E, Ė) on α. Similar
arguments show that (E, Ė) depend continuously on γ and also on β. Thus we have that solutions of
(6) with (3) depend continuously on the probability measure F in the sense that the map

F → (E, Ė)

is continuous from P(T ) to L2([0, T ], V )× L2([0, T ], H).
Further, this yields that F → J(F ) =

∑

j |E(tj , 0;F ) − Êj |2 is continuous from P(T ) to R1, where
P(T ), with the Prohorov metric, is compact for T compact. Then the general theory of Banks-Bihari in
[BB] as outlined in [BBPP] can be employed to obtain existence and stability for the inverse problem,
as well as an approximation theory which can be used as a basis for a computational methodology.

5 Conclusion

We have presented theoretical results on a model for the electric field with multiple electric polarization
mechanisms in a dielectric material. This provides a firm foundation for an inverse problem formulation
to determine an unknown probability distribution of parameters which describe the dielectric properties
of the material. To this end, we have shown the continuous dependence of the solutions with respect
to the unknown distributions in the Prohorov metic. This argument, combined with previous results on
existence and uniqueness in Maxwell systems, demonstrate the well-posedness of the model. Moreover,
the theory described in [BB], [BBPP] can be combined with our results here to provide existence, stability,
and an approximation theory for the associated inverse problems.
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